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ABSTRACT

The deleterious effects of hyperthermai atomic oxygen (AO) found in low-Earth-orbit (LEO)

environments on critical flight materials has been known since early Shuttle flights. This corrosive

effect is of considerable concern because it compromises the performance and longevity of

spacecraft/satellite materials deployed for extended periods in LEO.

The NASA Evaluation of Oxygen Interactions with Materials-3 (EOIM-3) experiment sewed

as a testbed for a variety of candidate flight materials for space assets. A total of 57 JPL test

specimens were present in six sub-experiments aboard EOIM-3. In addition to a number of passive

exposure materials for flight and advanced technology programs, several sub-experiments were

included to provide data for understanding the details of atomic oxygen interactions with materials.

Data and interpretations are presented for the heated tray, heated strips, solar ultraviolet exposure,

and scatterometer sub-experiments, along with a detailed description of the exposure conditions

experienced by materials in the various experiments.

Mass spectra of products emerging from identical samples of a 13C-enriched polyimide

polymer (chemically equivalent to Kapton) under atomic oxygen bombardment in space and in the

laboratory were collected. Reaction products unambiguously detected in space were '3CO, NO,

_2C02, and _3C02. These reaction products and two others, H20 and _2CO, were detected in the

laboratory, along with inelastically scattered atomic and molecular oxygen. Qualitative agreement

was seen in the mass spectra taken in space and in the laboratory; the agreement may be improved

by reducing the fraction of 02 in the laboratory molecular beam. Both laboratory and space data

indicate that CO and C02 products come preferentially from reaction with the imide component of

the polymer chain, raising the possibility that the ether component may degrade in part by the

"evaporation" of higher molecular weight fragments. Laboratory time-of-flight distributions showed

1) incomplete energy accommodation of impinging O and 02 species that do not react with the

surface and 2) both hyperthermal and thermal CO and CO2 products, suggesting two distinct reaction

mechanisms with the surface.



1.0 Introduction

Future NASA missions will rely on long-lifetime high-performance space assets that will be

exposed to various orbital and interplanetary space environments. The recently recovered Long

Duration Exposure Facility (LDEF) satellite dramatically illustrates the detrimental effect of long

space exposure on thermal control materials, composites, optical materials, and other vulnerable

components. To ensure end-of-life performance of future space assets, it is critical to perform

material selection and design for each spacecraft system. The NASA Evaluation of Oxygen

Interactions with Materials (EOIM-3) experiment was developed to expand the database for materials

exposed to the low-Earth-orbit (LEO) atomic oxygen (AO) environment in an accelerated, moderate

fluence test.

To determine the temperature dependence of AO degradation processes of erosion and

oxidation, active tray experiments were carried out at 333 K (600C) and 473 K (200°C). To study

the synergistic effect of UV with AO, a variable solar ultraviolet exposure experiment was planned

for 25, 50, and 75 percent of total combined exposure. Model materials were exposed to AO

scattered from a variety of primary target materials. The lack of energetic AO directly impinging

on the test material, substantially reduces AO degradation. The Air Force Phillips Laboratory

(AFPL) mass spectrometer allows accurate AO reaction rate determination and also permits direct

observation of reaction products generated.

Recently, a protocol [1] has been written with the objective of providing "guidelines for

materials testing in ground-based atomic oxygen environments for the purpose of predicting the

durability of the tested materials in low-Earth-orbit (LEO)." The validity of testing under this

protocol, or any other set of criteria, rests on the proven ability of the ground-based test facility to

produce results that can be related in a straightforward manner to atomic-oxygen-induced effects on

materials in LEO. Both space- and ground-based studies on identical materials are required to

evaluate ground-based test methods aimed at predicting materials durability in space. Such a

ground-space correlation study, which involved materials exposure on the EOIM-3 flight experiment,

has been reported [2].
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Provenagreementbetweenlaboratoryand space experiments also adds value to the results

of scientific experiments in the laboratory. It is much easier to perform sophisticated experiments

in the laboratory than in space. Laboratory experiments therefore have the potential to reveal more

information than space experiments about the interaction mechanisms of hyperthermal oxygen atoms

with materials in LEO. The extent to which the laboratory results can lead to inferences about O-

atom interactions in LEO depends on the ability of the laboratory experiment to predict effects seen

in the actual LEO environment.

The EOIM-3 carousel experiment provided an ideal "calibration point" for powerful

molecular beam/surface scattering experiments that were conducted at the Jet Propulsion Laboratory

(JPL). This report contains new data, both from EOIM-3 and from our laboratory at JPL, on the

interaction of hyperthermal O atoms with an isotopically labeled, Kapton-like polyimide surface.

The molecular beam experiment provides the capability to examine the identity of products that

emerge from the surface, as well as their directions and velocities. These diagnostic capabilities

permit the interaction dynamics of fast O atoms with a surface to be inferred. The EOIM-3 carousel

experiment yields information only on the identity of the scattered species; nevertheless, this

information provides a common point of reference for assessing the value of the laboratory results.

The new laboratory results agree qualitatively with the space observations and point the way to a

clearer understanding of O-atom interactions with materials in LEO.

Subsequent sections of this report also provide a detailed description of the exposure

conditions experienced by materials in various experimental trays, a description of the materials

tested, the pre- and post-flight exposure characterization methods, and the results of the AO

exposure experiments.
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2.0 STS-46 and EOIM-3 Overview

The STS-46 mission included two primary payloads, the European Retrievable Carrier

(EURECA) satellite and the Tethered Satellite System (TSS-1), and two secondary experiments, the

Thermal Energy Management Processes experiment (TEMP 2A-3) and EOIM-3. STS-46 also

carried four "Get-Away Special" canisters--the Limited Duration Candidate Experiment 0.,DCE-

1,2,3) and the Consortium of Materials Space Processing Complex Autonomous Payload (CONCAP-

U & -I11).

2.1 EOIM Integration

The investigators integrated test materials into EOIM-3 sub-experiment fixtures in a clean

room environment. The sub-experiment f'uctures were integrated into the EOIM-3 pallet by

Lockheed Engineering and Space Co. personnel under the direction of the NASA/Johnson Space

Center (JSC) experiment manager. The installation took place in a Class-100,000 high-bay clean

room at the NASA Kennedy Space Center (KSC) Operations and Configurations (O&C) Building.

The individual remove-before-flight covers remained in place until all 15 EOIM-3 passive trays were

installed. These individual covers were removed prior to the EOIM-3 pallet integration into the

orbiter, where the entire EOIM-3 pallet was protected with a large single pallet cover. The EOIM-3

experiment pallet was installed in Shuttle Bay 12, as illustrated in Figure 2-1, and removed during

orbiter close-out activities approximately 70 hours before launch. The payload service structure

provided a nominal Class-I00,000 environment for the orbiter payload prior to closing the payload

bay doors 60 hours before launch. A nitrogen purge through the orbiter payload bay continued from

40 hours before launch until just prior to launch.

2.2 STS-46 Mission Timeline

STS--46 was launched on July 31, 1992, aboard the Space Shuttle Atlantis. Deployment of

the EURECA satellite, the first major mission milestone, occurred at a Mission Elapsed Time

(MET) of 1 Day, 17 hours, and 8 minutes (01/17:08). Deployment occurred at an orbit altitude of

approximately 425 km (230 nmi). Prior to EURECA deployment, the orbiter orientaton maintained

the payload bay in a solar inertial configuration (-ZSI) for approximately 12 hours starting at MET

0/23:07, with -Z pointing out of the payload bay (see Figure 2-1). After ELIRECA deployment,

4
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STS-46 continued in a station-keeping mode with EURECA, providing a minor period of

approximately 4 hours of ram atomic oxygen exposure to EOIM-3. STS-46 then moved into a

circular orbit of approximately 300 km (160 nmi) at MET 02/20:28 for TSS-1 operations.

The TSS-1 sateUite was to deploy to a distance of approximately 20 ]an from the Shuttle and

conduct an electrodynamic experiment. Due to technical problems, TSS-1 was deployed to only

approximately 280 m. Following retrieval and berthing of TSS-1 at MET 05/08:56, the orbiter

transferred into a circular orbit of approximately 230 km (123 nmi) at MET 05/19:27.

At MET 05/22:30, the payload bay of Atlantis was oriented into the orbital velocity vector

(-ZVV) to begin the EOIM-3 atomic oxygen exposure experiment. Thereafter, the orbiter

maintained the ram attitude within +_5 ° until MET 07/16:45, at which time the payload bay was

reoriented out of the velocity direction and prepared for the deorbit bum. The total ram exposure

time at 230 km was 42.25 hours.

2.3 Atomic Oxygen Environment

The AO fluence for EOIM-3 is estimated to be 2.2-2.5 x 102° atoms/cm 2. Three methods

provided estimates of the EOIM-3 atomic oxygen fluence. First, the Mass Spectrometric and

Incoherent Scatter (MSIS-86) Thermospheric model, in conjunction with the National Oceanic and

Atmospheric Administration (NOAA), reported solar 10.7-cm flux (Ft0.7) and the magnetic indices

(a_, kv) were used to estimate the densities for various atmospheric species, including AO. Figure

2-2 provides an orbital history of atomic oxygen density for the EOIM-3 exposure portion of the

STS-46 mission. The AO flux was computed by coupling the MSIS-86 density with the orbiter

velocity. AO fluence was calculated by integrating the AO flux for the exposure period. Depending

on the period in which the solar and magnetic indices were sampled, the estimated AO fluence

varied from 2.0x102° atoms/era 2 to 2.2x102° atoms/cm 2. The second AO fluence estimate is based

on the erosion of Kapton polyimide film. Numerous Kapton samples were located on various

passive trays on the EOIM-3 pallet. Erosion was determined by mass loss, scanning electron

microscopy (SEM), and profflometry measurements. Based on a reaction efficiency of 3.0x10 "u

cm3/AO atom, the EOIM-3 fluence was calculated to be between 2.3x102° atoms/cm 2 and 2.5x10 _°

atoms/cm 2. The weight losses varied with sample location and gave rise to the calculated fluence

6
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range. The third AO fluence estimate is based on data from the AFPL mass spectrometer. The on-

board spectrometer provided a mission fluence estimate of 2.2+0.4x102° atoms/cm 2.

2.4 Solar UV Environment

NASA JSC provided the EOIM-3 solar ISV exposure estimate. Their estimate is based on

integration of the sun angle, orbiter attitude, and ephemeris over the entire mission. The estimate

does not account for shadowing from payloads and orbiter structure, but is thought to be accurate

within +20 percent. The estimate is 25 equivalent solar hours (ESI-I) exposure.

2.5 Thermal Environment

The EOIM-3 pallet provided 12 temperature sensors as part of the state-of-health and

engineering data system. Figure 2-3 shows the on-orbit temperature history for an aluminized

Kapton film bonded on a thin aluminum disk to which one of the temperature sensors was mounted.

The various phases of the mission are indicated along the base of the plot. During the EURECA

operations, the payload bay was held in a solar inertial attitude for approximately 12 hours. The

Kapton film reached a temperature in excess of 343 K (70°C) during this period. Later, during the

EOIM-3 exposure phase of the mission, the same sensor temperature cycled between 293 K

(+20°C) and 318 K (+45°C). Figures 2-4 and 2-5 show the temperature histories of the mounting

location for the trays heated to 333 and 473 K, respectively. Figure 2-6 is a temperature history

of the composite stress fixture H2 located near the YPL/Neutral Particle Beam scatterometers. The

peak temperature during the solar inertial phase reached 328 K (+55°C), and temperatures cycled

between 278 K (+5°C) and 293 K (+20°C) during the EOIM-3 exposure period.

2.6 Flight Contamination

Surface chemical analyses revealed a small percentage of silicon present on all flight samples.

Materials readily eroded by atomic oxygen contained 2-3 atom percent silicon on the surface. The

more stable or AO-resistant materials contained 9-12 atom percent silicon on the surface. The

stoichiometry indicated that a thin film of SiO2 had formed on these specimens. For the stable

materials, which had received a heavier accumulation of silicon, this film is on the order of 2 nm

(20 A) thick.

8
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The potential sources for silicone contamination have been identified. The forward surfaces

of the Orbital Maneuvering System (OMS) pods were just in the field-of-view of the EOIM-3

samples. Since a silicone-based waterproofing agent is applied to the shuttle thermal protection

system (TPS) tiles, the flies are a potential source of silicone contamination. The aft bulkhead is

covered with a multilayer insulation blanket with an outer layer of Beta-cloth. Beta-cloth is a woven

glass fabric encapsulated in a fluorocarbon resin. In the manufacturing process, the glass fabric is

treated with a silicone oil prior to encapsulation to improve the handling characteristics of the

material. In the thermal vacuum environment of space, this silicone oil can slowly diffuse from

within the fabric, migrate to the surface, and outgas. Yellowing of the Beta-cloth liner is commonly

observed and is associated with environmental aging of the silicone film. Silicone oil could outgas

and be transported via line-of-sight to sensitive EOIM-3 surfaces.

2.7 Post-Flight Inspection

A team of EOIM-3 coinvestigators and the Mission Manager inspected EOIM-3 in the

orbiter payload bay when Atlantis returned to Orbiter Processing Facility Bay 2. The inspection

objectives were to assess overall hardware condition, examine hardware and experiments for

evidence of contamination, and direct the photographic documentation of EOIM-3. The inspection

team members were:

Bruce Banks

David Brinza

Rachel Kemenetzky

Jack Triolo

Michael Richardson

NASA Lewis Research Center

NASA Jet Propulsion Laboratory

NASA Marshall Space Flight Center

NASA Goddard Space Flight Center

NASA Johnson Space Flight Center/LMSC

The team performed two visual inspections of the EOIM-3 hardware and experiments while

EOIM-3 was in the bay. The first inspection was performed from the Level 7 platforms

approximately 4.5 m above and 6 m outboard (15 and 20 ft) of the payload bay. The second

occurred from the Level 13 platforms located adjacent to the payload bay door hinges.

The first inspection provided an overall perspective of the hardware in relationship to the

orbiter structures and other payloads in the bay. No obvious regions of contamination were

13



observedduring this inspection. The EOIM-3 hardware itself appeared to be in good condition.

The sub-experiment elements all appeared normal.

The second inspection permitted a physically closer evaluation of the experimental hardware

and surrounding support structure. The passive trays showed no visibly apparent contamination.

The JPL Kapton witness appeared nonspecular and the MgF2 witness appeared clean. From this

location, the mirror materials and protective coatings appeared visually dean.

The EOIM-3 pallet was removed from Atlantis on August 15, 1992, and transferred to the

Operations and Checkout (O&C) Building. EOIM-3 sub-experiment deintegration began ten days

later on August 25. Following removal, the sub-experiment hardware was protected by individual

hard covers and double-bagged in clean metallized polymer film to avoid contamination during

shipment and handling. The test specimens were removed from the sub-experiment hardware in a

clean room environment.

14



3.0 EOIM-3 Experiment

Material samples were integrated into six experimental environments in this EOIM-3 pallet.

Their locations are shown in Figure 3-1, which include the heated sample trays (Item A), the

scatterometer (Item I), the passive trays (Items N1-15), the variable exposure tray (Item O), the

solar UV experiment (Item D), and one of the five carousel compartments. Measurement of the two

key parameters of absolute erosion rate and extent of oxidation for the material samples in these

experimental environments will provide a comprehensive overview of how they will perform under

most deployment conditions. Specifically, the erosion rate and degree of oxidation for ambient,

ram-directed AO will come from the passive tray samples, for reflected (scattered) AO from the

scatterometer samples, and the temperature dependence of these two processes from the heated tray

samples. The specific materials flown and the experimental configurations are listed in Appendix

A.

3.1 Sample Handling

All material samples were handled by personnel wearing vinyl, lint-free Class-100 clean

room gloves. Disk samples were maintained in individual Fluoroware containers consisting of

polypropylene wafer shippers with polyethylene springs. These containers protected the samples

from damage and contamination during shipment and storage. During shipping, the containers were

double-bagged in 3M-2110E antistatic reelosable bags.

3.2 Sample Characterization Methods

This section describes the methods used to characterize the material specimens before and

after exposure aboard STS-46.

3.2.1 Photography

All specimens were photographed at IPL in a Class-100 clean room. For a direct

comparison, close-up photographs of each flight-exposed sample adjacent to its control were taken.

15
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K - REFLECTOMETER (LeRC), 2 EA

L - PINHOLE CAMERA (LeRC), 1 EA

M - SCATEROMETER(AEROSPACE CORP.), lEA
N - PASSIVE SAMPLE CARRIERS, 15 EA

O - VARIABLE EXPOSURE TRAY, lEA
P - FREEDOM ARRAy MATERIALS EXPOSURE

EXPERIMENT(LeRC), 1 EA
Q - QUADRUPLE MASS SPECTROMETER, 1 EA

Figure 3-1. The EOIM-3 experiment pallet.
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3.2.2 Electron Spectroscopy for Chemical Analysis

The surface chemistry of each control sample was analyzed using Electron Spectroscopy for

Chemical Analysis (ESCA), also known as X-ray Photoelectron Spectroscopy (XPS). The analysis

ascertained material surface cleanliness and chemical composition.

ESCA spectra were collected with a Surface Science Instruments SSX-501 Spectrometer with

monochromatized A1 Ka X-rays (1486.6 eV). The X-ray source produces spot diameters of 150,

300, 600, and 1000 _m. Both 300- and 600-tzm diameter spots were used. The chemical

composition of the surface is probed to a depth of 10 nm (100 A). ESCA can detect all elements

except hydrogen. Sample analyses were performed at pressures below 4 t_Pa (3 x 10 .8 torr). ESCA

spectra were taken of the flight-exposed samples and then compared to their controls.

3.2.3 Weight Measurement

The difference in sample weight before and after exposure provides a way to determine AO

effects. Weight loss may indicate erosion; weight increases may also be observed and could indicate

water pickup, contamination, or a more complex interaction such as oxidation.

The flight and control samples were weighed before and after exposure. To account for

moisture uptake, the materials were conditioned in a 50-percent relative humidity chamber at room

temperature for 24 hours per ASTM E-595 procedures prior to each weighing. The chamber used

a saturated calcium nitrate solution to maintain constant humidity.

Weight measurements were made on a Mettler AE 163 Balance, which has a 0.01-rag

sensitivity. The weighing procedure consisted of removing a sample from the humidity chamber

and placing it in the balance immediately. The weight was recorded when the reading

stabilized--typieaUy less than one minute. After weighing, the sample was promptly returned to its

Fluoroware container.
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3.2.4 Scanning Electron Microscopy

Atomic oxygen-induced erosion morphologies and features were imaged via Scanning

Electron Microscopy (SEM) for many of the EOIM-3 specimens. Nonconductive materials, such

as polymers, required a "shadow" of metaUization to prevent distortion of the images due to

charging of the material. A low-energy magnetron sputtering source was used to coat the

nonconductive specimens with approximately 5 nm (50 A) of a gold/palladium alloy. In order to

prevent damage to the very delicate erosion features, SEM imaging was performed at low electron

energy (10 kV) and minimum current.

SEM imaging of erosion "mesas" proved very useful in determining the depth of erosion due

to atomic oxygen. The mesas, seen in Figure 3-2(a), were formed by a surface contaminant

(particle or residue) protecting the underlying erodible material during atomic oxygen exposure.

The surrounding unprotected material was removed to a depth characteristic of the material's erosion

efficiency, leaving a spire or mesa. SEM images were obtained with known viewing geometries

(generally 45" from the surface normal) so the height of the mesas could be readily determined, as

indicated in Figure 3-20a). The principal uncertainty in the mesa height measurement arises from

specifying the "shag-carpet" base of the mesas, clearly shown in Figure 3-2(c).

3.2.5 High-Performance Liquid Chromatography

Molecular weight distributions were obtained for soluble polymeric test materials via size

exclusion High Pressure Liquid Chromatography (HPLC). Chromatographs were obtained on a

Waters Associates Model 6000A chromatograph. The Ultrastyragel columns were calibrated via

polystyrene molecular weight standards in the range of 15,000- to 1,860,000-gram molecular weight.

Samples were dissolved in tetrahydrofuran (THF) or methylene chloride to provide a 1000 ppm

polymer concentration. Detection was performed by a Waters Model 410 Differential Refraetometer

and a Model 490E Programmable Multi-wavelength Detector operating at 254 rim.

3.2. 6 Spectral Reflectance

Reflectance spectra were obtained for the Spectrolon materials using a Cary-5E

Spectrophotometer with a reflectance attachment and Speetrolon-coated integrating sphere.
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SUV4d POLYSTYREME $5592

B6 383 10.OkV X4. 08K 7. 58_m

Figure 3-2. SEM images of mesas used to determine erosion depths
[see text for descriptions of (a), (b), (c)].
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3.3 Passive Tray Experiment

To obtain accurate AO erosion rates of the coated candidate materials, 14 passive tray

specimens consisting of 2.54-cm (l")-diameter disks of various coatings and materials were prepared

for flight exposure. They were integrated into two passive specimen trays (see Appendix A, Table

1) from Johnson Space Center USC) and Marshall Space Flight Center (MSFC).

The passive tray flight-exposed samples were photographed along with the control specimens

in order to provide a direct visual assessment of gross atomic oxygen erosion effects. Some of these

photographs are included in the next section of this report. Mass measurements are included in

Appendix B. Surface chemical analyses (ESCA) were performed, with data reported in Appendix

C, to assist in identifying chemical changes to material surfaces as a result of atomic oxygen attack,

contamination, etc.

3.3.1 Fluorinated Polystyrene Materials

The objective is to determine the effect of selective fluorination of polystyrene on the

susceptibility to attack by atomic oxygen. Three variants of polystyrene were exposed to atomic

oxygen: unsubstituted molecular weight standard polystyrene, backbone-fluorinated polystyrene, and

ring-fluorinated (see Table 3-1 and Figure 3-3). Completely fluorinated polystyrene is highly

desirable, but preparation methods for perfluoro-polystyrene are unknown.

The fluorinated polystyrenes were synthesized via emulsion free-radical polymerization of

purified monomers. The films were characterized via infrared spectroscopy and high- performance

liquid chromatography. The molecular weight distributions for the polystyrene series were

determined via size exclusion I-IPLC and are listed below.

Table 3-1. Molecular weight distributions of polystyrenes

Polymer M,, M. M,,/M.

Polystyrene 453,000 174,000 2.6

Trifluoro-Polystyrene 280,000 103,000 2.72

(Backbone-fluorinated)

Pentafluoro-Polystyrene 431,000 278,000 1.55

(Ring-fluorinated)
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OQO_ OOO

Polystyrene (1.04 g/cm ^3)

QOO_ QOO

F F F

Ring-Fluorinated Polystyrene (~1.8 g/cm ^3)

F F F F F F F F

O0 O0

Backbone-Fluorinated Polystyrene (~1.4 g/cm ^3)

Figure 3-3. Polystyrene and the fluorinated analogues studied on EOIM-3.
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3.3.2 Spectrolon

Spectrolon (TM) specimens of varying solar reflectance were exposed in order to assess the

stability of "pure" and carbon-loaded pressed polytetrafluoroethylene (FITE) reflectance standards.

Spectrolon is a candidate calibration target material for space-borne optical systems such as the

Multiwavelength Imaging Spectral Radiometer (MISR). The Speetrolon specimens were provided

by Labsphere, Inc.

3.3.3 White Paints

Two white paints were evaluated by IPL on the EOIM-3 passive Way. HINCOR, an

electrically-conductive zinc ortho-titanate (ZOT) silicate binder white paint developed for the Cassini

spacecraft, was characterized for changes in electrical conductivity as well as solar absorptance and

hemispherical emittance. An experimental paint containing ZOT pigment and a peroxide-cured

polyphosphazene binder were also evaluated on EOIM-3.

3.4 Heated Tray and Heated Strip Experiments

Eighteen material samples were integrated into heated Ways and strips to study the

temperature dependence of AO erosion at 333 K (600C) and 473 K (200°C). The heated tray

samples were 2.54-cm-diameter circular disks, while the heated copper strips were 2.54 x 22.86 cm

(1" x 9") for the 333 K strip, and 2.54 x 25.4 cm (1" x 10") for the 473 K strip. In Appendix A,

Tables 2(a) and (b) list the candidate samples located in their respective 333 and 473 K heated ways,

while Table 3 lists the materials located in the heated strips.

3.4.1 Carbon�Carbon Materials

Three candidate materials for carbon/carbon composite structures--designated SP18, SP16,

and TS15--were integrated into ambient and heated trays. The 2.54-cm disk specimens were cut

from panels produced for developmental testing of candidate heat shields for the Solar Probe

mission. The atomic oxygen erosion rate for carbon is known to exhibit a significant dependence

upon temperature. Quantification of the extent of erosion and changes in thermo-optical properties

for these carbon/carbon specimens will help evaluate temperature-dependent effects of atomic

oxygen exposure.
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A carbon-carbonmaterialdesignedfor high strength, SP18 is composed of T-50, a 3-K fiber

woven in a 5 harness weave with an initial phenolic matrix. The material received two

graphitization treatments at 2773 K (2500°C) and two 1273 K (1000°C) CVD carbon redensification

processing steps. The material final density is approximately 1.6 gm/cm 3.

Another carbon-carbon material designed for high strength, SP16 is also composed of T-50.

The material received two graphitization treatments at 2773 K (25000C) and two A-240 pitch

redensification processing steps, followed by an 1123 K (850°C) carbonization. The material final

density is approximately 1.5 gm/cm 3.

A carbon-carbon material designed for low thermal expansion, TS15 is also composed of

T-50. The material was configured quasi-isotropically. The composite received two 1273 K CVD

carbon redensification steps, with no graphitization. The material final density is approximately 1.4

gm/cm 3.

3. 4.2 Advanced Photovoltaic Solar Array (APSA) Substrates

TRW (Space Park) provided a selection of candidate substrate materials for the Advanced

Photovoltaic Solar Array (APSA). The test materials included Kapton-HN, SiOx (150 nm/1500 Jr)

on Kapton, 150-nm Indium Tin Oxide 0TO) on Kapton-HN, 150-nm Germanium on Kapton-HN,

and Carbon-loaded Kapton films. The effectiveness of the thin film coatings in preventing erosion

of Kapton was evaluated at high temperatures (333 and 473 K). The susceptibility of the coated

films to cracking, peeling, and undercutting in the thermal vacuum environment in the presence of

atomic oxygen was also evaluated.

3.4.3 Polycyanate and Modified-Polycyanate Resins

Two formulations of polycyanate resins were supplied by ICI to evaluate atomic oxygen

stability of materials intended for application as matrices for graphite fiber-reinforced polymeric

composites. One of the specimens (MCY) was siloxane-modified to provide resistance against

attack by atomic oxygen.
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3.5 Scatterometer

JPL designed and fabricated atomic oxygen scatterometers (see Figure 3-4), which prevent

direct AO interaction with the material samples, but permit scattered AO to impinge them. Various

scattering surfaces were applied to the scatterometer chambers. One scatterometer included a

polished aluminum surface that reflects most of the entering AO back towards the samples, and a

silver surface that reacts with much of the entering AO, thereby greatly attenuating the amount that

is scattered back. The aluminum surface provides a determination of the magnitude of degradation

due to scattered AO, while the silver surface represents a possible approach to mitigating it. The

other scatterometerincluded scattering targetsof carbon, fused silica, polyethylene, and aluminum.

Table 4 in Appendix A summarizes the scattering surfaces and reactive target materials flown in the

scatterometer.

3.6 Solar UV Experiment

The Solar UV experiment permitted an assessment of the synergistic effect of solar exposure

and atomic oxygen upon model materials. An occulting baffle, controlled by a photodiode-tfiggered

mechanism, alternately exposed materials to day or night conditions. Four polymeric materials were

selected for the solar UV experiment: Udel 1700 polysulfone, amorphous Teflon AF 1600, a

molecular-weight standard polymethylmethacrylate (PMMA: Mw = 89,000 and M_ = 80,800), and

a polystyrene molecular-weight standard (M,, = 226,600 and M_ = 217,700). Triplicates of each

test material were provided: one for day exposure only, another for night exposure, and one for

full (day and night) exposure. Mass loss, ESCA, SEM, and HPLC characterization were performed

on three of these materials: the polysulfone, PMMA, and polystyrene specimens.

3.7 Variable Exposure Experiment

Boron nitzide and HOPG were selected for the variable-exposure experiment that used a

baffle system to control the percentage of exposure during the mission. Unfortunately, the baffle

moved to the fully open position early in the mission and nullified this experiment. The four

duplicate samples of each material received full mission exposure.
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Figure 3-4. EOIM-3 scatterometer design.
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3.8 Mass Spectrometer and Carousel

A key active experiment on EOIM-3 was the reaction product measurement experiment.

Five different materials were mounted on a carousel, such that the surface normal of each material

was 45 ° with respect to the direction of O-atom attack during exposure to atomic oxygen. The

carousel could be rotated to place an individual material in view of a mass spectrometer detector,

whose nominal viewing axis was 90 ° to the direction of O-atom impingement. One goal of the

carousel experiment was to study the mass spectra of reactive products emerging from the surfaces

and use the identity of the volatile products to help infer the reaction mechanisms of fast O atoms

in space with the various surfaces. A cover was rotated over the viewed material part of the time

to allow for the observation of the differences between the effect of direct O-atom attack and that

of scattered O atoms.

JPL supplied one of the carousel materials, a 13C-enriched polyimide polymer that is

chemically equivalent to Kapton I-IN, which is manufactured by E. I. DuPont de Nemours and Co.,

Inc. Enrichment with 13C permits the observation of carbon monoxide (CO) reactive product, which

would otherwise be obscured by the high background at a mass-to-charge ratio (m/z) of 28 due to

molecular nitrogen in the residual atmosphere in LEO. In addition, detection of 13CO and 13CO2

proves unambiguously that products of the reaction of the impinging O atoms with the 13C-em'iched

polyimide are being observed.

Because the 13C-enriched polyimide is chemically equivalent to Kapton, we will henceforth

refer to it as _3C-¢nriched Kapton. Figure 3-5 illustrates the key steps in the synthesis of I_C-

enriched Kapton. All the carbons in one precursor, the ether, were carbon-13. Thus, the resulting

polyimide film had a biphenyl ether block in its repeat unit containing 12 carbon atoms that were

isotopically labeled as _3C and an imide block containing 10 unlabeled carbon atoms.

3.9 Ground-Based Scattering Measurements

A study of the reaction of hyperthermal O atoms with a Kapton surface in the laboratory has

been performed using a crossed molecular beams apparatus [3,,1]. This apparatus (see Fig. 3-6)

allows beam/surface scattering experiments similar to the EOIM-3 carousel experiment, but it is

much more powerful because it permits determination of the velocities and directions of scattered
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products that emerge from a surface. The atomic oxygen beam source is basically a copy of the

source designed by Physical Sciences, Inc. (PSI) [5], where C02 laser detonation of oxygen gas is

used to produce a pulsed beam of fast O atoms with translational energies near 5 eV. Our source

uses a home-built piezoelectric pulsed molecular beam valve [6] to inject 02 gas into the conical

nozzle and a 5 J/pulse Alltec CO2 laser to induce breakdown in the gas. The pulse repetition rate

of the source was 1.8 Hz. For the scattering experiments described herein, the central portion of

the hyperthermal beam was selected with a 3-mm-diam. aperture (or "skimmer") placed 80 cm from

the apex of the conical nozzle and allowed to impinge on a target 92 cm from the apex of the

nozzle, which was mounted on the end of a manipulator. Based on Kapton erosion measurements,

we estimate the atomic oxygen flux at the target to be on the order of 10 t4 atoms/cm2/pulse. A

quadrupole mass spectrometer with a triple differentially pumped ionizer can be rotated about the

interaction zone on the surface and can detect inelastically and reactively scattered products that

emerge from the surface in a particular direction. The distance from the surface to the ionizer of

the detector is 34.5 era, and the detector viewing angle is 3 °. The mass spectrometer has been

carefully designed with apertures that permit any products entering the ionizer to pass through into

another differentially pumped region. The probability of species, which pass through without being

ionized, scattering back into the ionizer is therefore extremely low. Thus, measurements of the

time-of-flight (TOF) distributions of species entering the detector give a true reflection of their

kinetic energies. The target can be lowered out of the beam and the detector can be positioned

directly along the beam axis in order to characterize the O-atom beam. When viewing the beam

directly, a very small 0.12-mm-diameter aperture is used on the front of the detector to prevent gas

buildup in the ionization region.

Two samples of Kapton film, one 13C-enriched and the other DuPont Kapton I/N, were

mounted on the end of the manipulator such that either sample could be placed in the beam path

without breaking vacuum. The temperature of the sample mount was maintained at 340 K.

Although the pressure in the source chamber rose to -- 5 x 10 -4 torr during the pulse, the pressure

in the main scattering chamber remained _<2 x 10 -7 tort. The source chamber was evacuated with

a 25.4 cm (10") Varian VHS-10 oil diffusion pump, which had a water baffle that was cooled with

a refrigerated liquid to 250 K. The main scattering chamber was evacuated with two 25.4 cm (10")

CTI-10 cryopumps and a liquid nitrogen cryopanel that covered the bottom of the chamber. Even
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with cryopumpingof the main chamber and scrupulous cleaning of the samples with ultraclean

ethanol prior to mounting in the chamber, a contamination layer accumulated on the samples.

Although some contamination was probably being deposited constantly during exposure and thus

erosion of the surface, a steady-state condition could be reached where we were certain that we were

observing products of a reaction with the actual sample material and not a contamination layer on

it. As will be seen below, the use of a 13C-labeled sample proved that a reaction was occurring with

the material. Two different means were used to rid the sample of contamination and reach steady

state, as determined by observation of reactive TOF signals at CO and CO2 product masses. One

method was simply to expose the target to oxygen atoms for a long time--> 10,000 pulses. To

reach steady state faster, we exposed the surface to a beam of 20 keV electrons during O-atom

exposure. The electron gun was oriented such that the electron beam was roughly normal to the

target surface when the O-atom beam incident angle was 45 °. We found that about 5 minutes of

electron exposure at fluxes between i and I0/_A/cm 2 cleaned the surface sufficiently that subsequent

reactive signals were identical to those seen after more than 10,000 pulses of the atomic oxygen

beam alone. Because both methods led to identical reactive signals, it appeared that the short

electron exposure did not alter the chemical reactions occurring at the surface. All the laboratory

data presented in this report were collected after "cleaning" the surface with the electron beam.

Figure 3-7 shows TOF spectra collected with the mass spectrometer directly viewing the

beam. Time zero is when the pulsed valve is triggered to open. At this time, oxygen gas begins

to enter the conical nozzle. The spike about 250/_s later corresponds to the firing of the COz laser.

This can be considered the actual time zero for the formation of the hyperthermal beam pulse. The

spike comes from photoelectrons produced in the detector by ultraviolet light emanating from the

laser-induced plasma. The pulse of hyperthermal species arrives at the detector around 200/_s after

the laser fires. Thermal 02, which is not processed by the laser, takes more than 2 ms to travel

126.5 cm to the ionizer. These and all TOF distributions presented here include the ion flight time,

which is the time required for an ion to travel from the ionizer to the Daly-type ion counter. The

ion flight time for a singly-charged ion of mass m has been found experimentally, and it can be

expressed in _ts by the formula t_(m) _ where the parameter a is a function of ion energy and other

mass spectrometer parameters and is equal to 2.24.
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Figure 3-7. Time-of-flight distributions of the molecular beam collected at two masses.
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It can be seen from Fig. 3-7 that the fast species in the beam consist of both atomic and

molecular oxygen. In fact, for the set of experiments discussed in this report, the 02 content was

roughly twice the O-atom content. The relative O-atom content in the hyperthermal beam pulse is

very sensitive to the actual operating conditions of the source. We have observed O-atom fractions

from 25 to 70 percent in beams produced in our laboratory. The ion content in a similar beam has

been measured at PSI to be about 1 percent, which should be considered an upper limit for our

beam. With the ionizer off, there is a tiny signal at m/z = 16 (or 32) whose integral is more than

three orders of magnitude lower than the signal with the ionizer on. Given that the detection

efficiency should be approximately four orders of magnitude higher for ions, the ion fraction in the

beam is probably much less than 1 percent.

Because we measure the arrival time and mass of species that travel a known distance from

the source to the ionizer, we can derive the energy distribution of the species in the beam pulse

(assuming that the width in the measured TOF distributions is determined by particles traveling at

different velocities with a single point of origin in the nozzle cone). We need only take into account

the fact that the mass spectrometer is a number density detector while the translational energy

distribution is proportional to flux. We thus use the relationship P(E) cc t2N(t). Figure 3-8 shows

the translational energy distribution of the O-atoms in the beam and the fit this distribution gives to

the beam TOF distribution. The average energy of this beam was 4.7 eV, and its width (FWHM)

was 2.5 eV. Figure 3-9 shows the analogous energy distribution and fit for the 02 molecules in the

beam. The O_ component had a much higher average energy (8.7 eV) and energy spread (5.5 eV)

than the O-atom component.
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4.0 Results and Discussion

This section provides discussion of the effects of the flight exposure environment on the

various material samples, as deduced by visual inspection, macroscopic photography, Electron

Spectroscopy for Chemical Analysis (ESCA), Atomic Force Microscopy (AFM), Scanning Electron

Microscopy (SEM), and High-Performance Liquid Chromatography (I-IPLC). Mass change data

and ESCA data referenced here are provided in appendices to this report.

4.1 Passive Tray Samples

Passive tray specimens from EOIM-3 were removed and examined for comparative analysis

of the effects of atomic oxygen exposure. The next sections describe those results.

4.1.1 Fluorinated Polystyrene Materials

Visual inspection and macrophotography of the flight materials revealed a nonspecular

surface in the area exposed to atomic oxygen. Weight loss measurements and erosion depth

measurements from "mesas" found in SEM images (Figure 4-1) of the exposed surface indicate that

fluorination of the backbone chain affords greater protection from atomic oxygen attack than ring

fluorination. The nonfluorinated polystyrene material eroded approximately 7.7 +1.1 _m,

corresponding to an erosion yield of 3.2 x 10 -_ cm3/AO. The ring-fluorinated polystyrene eroded

approximately 4.0 _ 1.0/zm while the backbone-fluorinated polystyrene eroded only 2.5 +0.6 #m.

Analysis of the ESCA data reveals that the ratio of fluorine to carbon decreases dramatically for

ring-fluorinated polystyrene, whereas the same ratio remains almost unchanged for the backbone-

fluorinated polymer. The ESCA results support an erosion model where the pentafluorophenyl ring

is removed by atomic oxygen attack, leading to fluorine depletion of the ring-fluorinated polymer.

The importance of protecting the polymer chain in order to reduce atomic oxygen attack is dearly

illustrated for this series of polymers.

4.1.2 Spectrolon

Visual inspection and macrophotography reveal very little, if any, change in the appearance

of the Spectrolon specimens. Results from spectral reflectance measurement show only minor

decrease in reflectance in the short wavelength region for the 100-percent reflectance specimen (see
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(a)

(b)

(c)

Figure 4-1. SEM photographs of polystyrene: (a) control, (b) ring-fluorinated,

and (c) backbone-fluorinated.
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Figure 4-2). Reflectance spectra for the carbon-loaded Spectrolon materials did not reveal

significant differences for exposed versus control specimens. The ESCA data indicate minor

oxidation of the Spectrolon specimens with no discemable trend with increased carbon loading. The

carbon particles used in the lower reflectance Spectrolon are apparently sufficiently protected by the

PTFE binder to prevent significant loss of carbon content at EOIM-3 atomic oxygen fluence levels.

The 100-percent Spectrolon specimen exhibited fluorescence in the exposed region. This

phenomenon has been reported for LDEF and other EOIM-3 test materials examined by NASA

Marshall Space Flight Center.

4.1.3 White Paints

Visual and macrophotography revealed no apparent changes in the polyphosphazene- and

silicate-bound ZOT paints. Measurement of thermo-optical properties (a,e) showed no change in

the HINCOR (silicate) paints as a result of atomic oxygen exposure. The ESCA data for the

HINCOR paint also attest to the exceptional stability of the inorganic paint to atomic oxygen. The

polyphosphazene-bound paint showed an expected increase in phosphorus and oxygen content,

indicating the propensity for polyphosphazene to form an inorganic phosphate glass coating upon

atomic oxygen exposure.

4.2 Heated Tray and Heated Strip Samples

From visual inspection and macrophotography, the copper strips used for mounting the test

strip specimens underwent obvious changes in oxidation as a result of exposure to atomic oxygen

at elevated temperatures. The most severe oxidation occurred at 473 K (200°C), with the copper

strip appearing almost black, while only slight oxidation was witnessed in the 333 K (60°C) copper

strip. (See Figure 4-3.)

4.2.1 Carbon�Carbon Materials

Visual inspection and macroscopic photography of the carbon/carbon disks dearly showed

evidence of surface roughening in the exposed regions (Figure 4-4). The somewhat lustrous surface

of the carbon/carbon composite appeared fiat black following atomic oxygen exposure. Examination
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of the SEM images (Figures 4-5 to 4-7) of the composite materials indicated that the extent of

erosion increased with increasing temperature. Laboratory and earlier flight experiments indicate

that the reaction rate of atomic oxygen and carbon increases rapidly with temperature. Analysis of

the ESCA data for the three carbon/carbon materials on EOIM-3 heated trays reveals an interesting

trend. The maximum oxidation level is witnessed in the 333 K (60°C) specimens (18-20 percen0.

The ambient and high temperature specimens (473 K/200°C) consistently show slightly reduced

surface oxygen content (15-18 percent). A direct reaction model does not predict such a variation

of surface oxidation with temperature. Secondary surface reactions could explain this behavior.

Measurements of the solar absorptance and hemispherical emittance for one of the carbon/carbon

materials is tabulated below.

Table 4-1. Temperature dependence of atomic oxygen erosion

and thermo-optical properties of EOIM-3 carbon/carbon composite

Specimen Erosion (_) t_

SP- 18C (Control) .... 0.76 0.41

SP-18D (Ambient) < 1.0 0.78 0.44

SP-18A (473 K (200°C)) 2.0 0.85 0.47

The increases of solar absorptance, hemispherical emittance, and erosion are correlated with

the temperature of the test article during atomic oxygen exposure.

4. 2.2 APSA Substrates

Visual inspection and macrophotographs of the APSA Kapton film specimens showed little

damage to the coated films, but distinctive loss of specularity of the unprotected and carbon-loaded

Kapton films was apparent. No weight loss data is available for these specimens. The unprotected

Kapton films eroded approximately 7/_m on both the 333 K (60°C) and 473 K (200"C) strips as

determined from analysis of SEM images (Figure 4-8). Carbon-loaded Kapton eroded about 5/_m

with no discernable differences noted in the SEMs for the 333 K (60"C) and 473 K (200°C)

specimens (Figure 4-9). SEM images of the surface of SiOx-coated Kapton showed extensive

crazing and cracking in both the 333 K (60°C) and 473 K (200"12) specimens (Figure 4-10). Some
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(a)

(b) , ii_ ,_I_'_

Figure 4-8. SEM photographs of unprotected Kapton: (a) ambient, (b) 333 K (60°C), and
(c) 473 K (200°C).
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evidence for undercutting and deep erosion of the underlying Kapton was observed in cracks and

local flaws in the coating. The ITO-coated Kapton showed some localized delamination in the 333

K (60°C) specimen with more extensive and regular (rectangular) cracking in the 473 K (200°C)

test strip (Figure 4-11). Undercutting and erosion of the Kapton was again visible beneath the

delaminations and in the cracks. The germanium-coated Kapton showed very little evidence for

cracking, crazing, or delaminations in the 333 K (60°C) specimen, although some flaws and

scratches were observed (Figure 4-12). The 473 K (200°C) specimen did show crazing and slight

delamination of the germanium coating. Among the thin-f'tim-coated Kapton substrates, the

germanium-coated material performed the best, while the SiOx-eoated material performed the worst.

The germanium-coated Kapton films also provided a study in oxidation chemistry of a

semiconductor material. High-resolution ESCA data for the germanium 3-D peaks near 30 eV were

analyzed to determine the thickness of the oxide "skin" on the germanium-coated Kapton specimens.

The thickness of the oxide layer of germanium was found to decrease with increasing temperature

as tabulated below.

Table 4-2. Temperature dependence of oxide layer thickness

for EOIM-3 germanium-coated Kapton

Specimen Location

Passive (283-313K

or 10"--40°C)

GeOx Thickness (rim)

333 K (60"C) Strip 4

473 K (200"C) Strip

The variation in oxide thickness may be attributed to formation of volatile GeO by either

direct reaction of atomic oxygen with germanium or disproportionation of stable GeO2.
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The germanium coating also proved to be an excellent surface for determining the thickness

of silicon oxide contamination. The silicon 2p peak area was compared to germanium 3-D peak

areas. Assuming the silicon oxide resides on the surface of the germanium coating, an approximate

silicon oxide thickness of 2 nm (20 A) was estimated from the ESCA data.

4. 2.3 Polycyanate and Modified-Polycyanate Resins

Due to the initial roughness of the polycyanate resin specimens, visual inspection and

macrophotography does not provide a clear indication of atomic oxygen induced roughening of these

test articles. However, SEM images and mass loss data provide a clear indication of the relative

erosion characteristics for the base (BCY) and siloxane-modified (MCY) polycyanate materials (see

Figures 4-13 and 4-14). The mass loss for the MCY specimen was 20 percent of the value observed

for the BCY specimen. This result, though, should not be construed to imply that the erosion rate

for MCY is one-fifth that for BCY. The SEM images show clear differences in the erosion

morphologies for the two materials. The base cyanate developed the familiar "shag-carpet" erosion

morphology witnessed in readily attacked materials such as Kapton. Erosion "mesas" with a height

on the order of 3 #m are observed in the base material. The siloxane-modified material shows a

"blotchy" erosion surface rather than the well-defined peaks witnessed in the base material. This

morphology indicates that the siloxane-modified material may consist of domains of siloxane-rich

regions scattered throughout the bulk material. The ESCA data for the modified material show a

considerable increase in the surface concentration of silicon in the exposed region. The unexposed

material contains approximately 5 percent surface silicon as compared to 25 percent surface silicon

for the atomic oxygen-exposed material. This is consistent with the formation of a protective

silicon-oxide-enriched "skin" on the MCY specimen as a result of atomic oxygen attack.

4.3 Seatterometer Samples

Kapton samples that were exposed to indirect attack from atomic oxygen in the scatterometer

showed little evidence of erosion. Based on the geometry of the scatterometer, the O-atom fluence

on the scatterometer samples is estimated to be less than 10 percent of the ram fluence for the

EOIM-3 experiment, so the erosion yield should be low even if the scattered O atoms have the same

reactivity as those that impinge directly. Assuming the reduced fluence was 1 x 1019 atoms/era 2 and

a typical reactivity of 3 x 10 -u cm3/atom, the recession of the Kapton surface would be about
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300 nm. Even this low level of erosion should lead to a roughened surface that could easily be seen

with the use of a scanning electron microscope; however, scanning electron micrographs of the

surfaces showed that they were only slightly roughened. Figure 4-15 shows a SEM photograph of

protected and unprotected Kapton that was exposed in the scattering chamber with SiO2 as the

scattering surface. The exposed surface appears more grainy than the unexposed surface, with a

"grain n size less than 30 nm. This example is typical of all the scatterometer samples, which

exhibited negligible roughening compared to what would be expected if the fluence on the surfaces

came from direct attack from O atoms in the ram. It thus appears that scattered oxygen atoms have

reduced reactivity, regardless of the surface from which they scatter.

Although erosion was negligible, the sample surfaces did become oxidized to levels that are

typical of Kapton exposed to ram attack (20-24 percent). The results of ESCA survey spectra that

sampled a region near the center of each test specimen are found in Appendix C. Each of the

Kapton specimens, with the exception of the SiO2 scattering target specimen, shows an increase in

the relative amount of surface oxygen. The reason for the lack of increased oxidation of the SiO2

scattering specimen is unclear.

The observation that scattered oxygen atoms have reduced reactivity confu'ms the implication

of recent inelastic scattering results (see Section 4.6.3) that fast O atoms lose a large fraction of

their kinetic energy when they bounce off a surface and thereby become less reactive. The

experiments at JPL show that O atoms with kinetic energies of about 5 eV almost always lose more

than 50 percent of their initial energy even after one bounce from a surface. In addition, a relatively

small fraction (< 20 percent) of the scattered O atoms have reached thermal equilibrium with the

surface. The exact amount of energy transfer depends on the sum of the initial and final scattering

angles, with energy transfer being less for more grazing collisions. Also, the nature of the surface

plays an important role in energy transfer. Surfaces that are very smooth and have high molecular

weight constituents or a "stiffer" molecular structure lead to low energy transfer. On the other

hand, surfaces that are rough with low molecular weight or that are more "pliable" tend to have

stronger interactions with incoming atoms and thus lead to more energy transfer. Nevertheless, the

average fractional energy transfer is significant, varying from approximately 50 to 90 percent, with
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polymers tending to absorb more energy than inorganic compounds. Thus, the scattering results

suggest that the kinetic energies of the O atoms impinging on the sample surfaces in the

scatterometers was in the range of 1-2 eV. The fact that the erosion of the samples was negligible

further suggests a strong energy dependence on the O-atom reactivity, although it is difficult to

derive the functional form of the dependence. While it is tempting to look for more erosion in the

samples that were in the chambers with smooth, inorganic scattering surfaces (SiO2 and A1203) ,

these are the surfaces that should most efficiently scatter incoming O atoms back in the opposite

direction from which they came; therefore, the fluence on the test samples in these chambers should

be less than that on the samples in the chambers with the polymer and carbon-13 (rough) surfaces.

Furthermore, the energy of the scattered O atoms in any chamber may be low enough to make the

erosion rate vanishingly small.

While the scattered O atoms do not appear to induce much erosion in the test samples, they

do oxidize them. Even though the erosion rate is small, close inspection with electron microscopy

does show that the scatterometer samples had a slight increase in surface roughness. Thus, O atoms

did react, albeit with low probability. Perhaps these surfaces that were in the early stages of erosion

had already reached a steady state of surface oxidation. Earlier (unpublished) JPL experiments have

shown evidence for a plateau in the level of surface oxidation of polyethylene when the fluence

exceeded - 10 lg atoms/era 2.

4.4 Solar UV Samples

The solar UV specimens were de-integrated at NASA/JSC under the direction of the EOIM-3

experiment manager. The specimens were shipped to JPL for subsequent analysis. SEM images

of polysulfone, PMMA, and polystyrene are presented in Figures 4-16 to 4-18, respectively. The

data in Table 4-3 summarizes mass loss and erosion information for the solar UV experiment

specimens. The data shown for Kapton erosion, as determined by profilometry, was reported by

NASA/JSC (S. Koontz). The raw mass data are provided in Appendix B.
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TaMe4-3. Mass loss and erosion data for EOIM-3 solar UV specimens

Material

(Exposure)
Mass Loss (mg) Erosion Depth

0_m)

(mass loss)

Erosion Depth

O_m)
(SEM mesa)

Kapton (Day) N/A N/A 5.03*

Kapton (Night) N/A N/A 3.08*

Kapton (Full)

Polysulfone (Day)

N/A
I I

N/A
I

8.11"

1.49 3.0 4.0

Polysulfone (Night) 0.78 1.6 1.7

4.0Polysulfone (Full)

r'MMA (Day)

1.99

0.57 6.5

PMMA (Night) 0.58 6.6 4.7

1.11PMMA (Futt)

Polystyrene (Day)

12.6 12.3

0.36 4.6 4.5

Polystyrene (Night) 0.27 3.5 3.4

0.57 7.3Polystyrene (Full)

Kapton erosion prof'flometry data provided by S. Koontz (NASA/JSC).

7.4

EOIM-3 state-of-health telemetry, provided by NASA/JSC, was analyzed to determine the

dwell time for the occulting baffle in the day and night positions. The baffle was in the day position

for 86,877 seconds (s) in the "day" position and 59,862 s in the "night" position. The day samples

were exposed to ram atomic oxygen for 59 percent of the full-exposure duration whereas the night

samples were exposed 41 percent of the time. An estimate of AO fluences, based on the MSIS-86

derived average daytime flux of 1.7 x l0 ts AO/em2-s and nighttime flux of 1.5 x l0 ts AO/cm 2 leads

to a daytime fluence of 1.5 x 1020 AO/cm2-s and a nighttime fluence of 9.1 x 1029 AO/cm 2. The

daytime specimens were exposed to 1.64 times the AO fluence experienced by the nighttime

specimens.
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The effect of solar UV radiation upon AO reactivity may be examined by comparison of the

erosion depths of the day and night specimens. Table 4-4 presents relative erosion of the day and

night specimens compared to the day and night AO fluence ratio. Examination of the erosion ratios

indicates that Kapton erosion tracks the relative AO fluences exactly. This implies that the atomic

oxygen erosion efficiency for Kapton is independent of solar irradiation. Polysulfone appears to

erode much more efficiently in the daytime phase than at night. In contrast to this enhanced daytime

reactivity, PMMA and polystyrene appear to erode less efficiently in the daytime portion of the orbit

than at night.

Table 4-4. Comparison of day and night erosion of EOIM-3 solar UV specimens

Mamfial Day/FuLl

Exposure
Erosion Ratio

Night/Full

Exposure

Day/Night
Erosion Ratio

Erosion Ratio

Kapton 0.62 0.38 1.63

Polysulfone 0.71 0.30 2.4

PMMA 0.53 0.38 1.4

Polystyrene 0.61 0.46 1.3

AO Fluence 0.62 0.38 1.64

It is also interesting to compare the erosion efficiencies (depth/fluence) for the day, night

and full exposure specimens with data obtained for materials exposed aboard the Long Duration

Exposure Facility [7,8] and previous shuttle flights (STS-8). Table 4-5 summarizes these data.

Note that the erosion efficiencies of PMM and polystyrene are about 25 % higher for the LDEF

exposure than for EOIM-3. Since LDEF materials receive approximately 400 times the amount of

solar radiation as experienced on EOIM-3, the enhanced erosion rate is not unexpected. It should

be noted that the surfaces of the test materials are also subjected to charged particle radiation

consisting of electrons and protons. Although the dose is anticipated to be small, recently laboratory

evidence indicated a significant synergistic effect of atomic oxygen and electron radiation for

Kapton.
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Table 4-5. Comparison of EO1M solar UV erosion efficiencies with LDEF results.

Material or

Environment

Parameter

Kapton (JSC)

EOIM-3 Reaction Efficiency (R.E.)

(xl0 -u cm3/atom)

Day Night

3.38

Full

3.38

Previous R.E.

(xlO -_ cm3/atom)

STS-8 LDEF

3.38 3.0 2.89

Polysulfone 2.68 1.87 2.33 2.4 2.3

PMMA 4.43 5.16 5.12 4.91 6.3

3.73

0.91

Polystyrene 3.02 3.08

2.4

25

1.49

< 10

1.8"

3.5

<25

4.17

AO Fluence

(xl02°)

Equiv. Solar
Hours

0

90.

> 10,000

* This specimen showed a significant phosphate content in ESCA, possibly reducing erosion.

The ESCA data for the Solar UV specimens are provided in Appendix C. The extent of

surface oxidation of the nighttime samples appeared to be slightly greater than that of the daytime

specimens. It is interesting to note that silicon contamination appears predominately on the

nighttime specimens, while the daytime specimens were free of silicon. It does not appear to be an

obvious trend for surface oxidation as compared to relative day/night reactivities for these materials.

The molecular weight distributions for control, day, night, and full-exposure specimens were

obtained for the solar UV specimens using HPLC. The measured molecular weight distributions

are provided in Figures 4-19 through 4-21. The weight and number average molecular weight data

are summarized in Table 4-6. The polysulfone and PMMA specimens show significant decreases

in average molecular weights for the fuU-exposure specimens referenced to the control molecular

weights. This is indicative of chain scission processes occurring in the bulk of the polymer.

Polystyrene, though, shows a small but consistent increase in molecular weight. Examination of

the HPLC trace for the polystyrenes (Figure 4-21) reveals a new molecular weight population near

M,, = 445,000. This feature is indicative of the formation of cross-links between the polystyrene
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polymer chains. The exposed polysulfone specimens were cross-linked significantly, as insoluble

(gel) mass fractions of about 0.06 were found for each of the polysulfone solar UV specimens. A

comparison of these data with LDEF results [7] shows consistent chain scission behavior for PMMA

and cross-linking processes for polystyrene and polysulfone. A more complete mechanistic

interpretation of the erosion and molecular weight data is still evolving for these materials.

Table 4-6. Molecular weight distributions for EOIM-3 solar UV specimens

Specimen _ lVl, MJlVl.

Polysulfone (Day) 139,000 104,400 1.33
J ,

Polysulfone (Night) 131,800 98,400 1.34

Polysulfone (Full) 106,000 83,800 1.26

Polysulfone (Control)

PMMA (Day)

PMMA (Night)

PMMA (Full)

PMMA (Control)

Polystyrene (Day)

Polystyrene (Night)

Polystyrene (Full)

Polystyrene (Control)

132,700

83,200

103,600

72,400

1.28

1.15

76,800 61,700 1.24

62,500 45,000 1.39

89,000 80,800 1.10

234,700 222,800 1.05

236,800 222,314 1.07

236,600 221,800 1.07

226,600 217,700 1.04

4.5 Variable Exposure Samples

The occulting baffle for the variable exposure experiment did not sequentially expose the four

sets of specimens to increasing levels of atomic oxygen fluence. Rather, the baffle moved to the

full open position shortly after activation. Therefore, only one of each of the variable exposure

specimens was examined for changes relative to the control articles. ESCA data, listed in Appendix

C, shows that the exposed boron nitride on silicon specimen was oxidized. Atomic oxygen is able

to replace the nitrogen in boron nitride, forming boron oxide. Boron oxide is highly hygroscopic,
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and readily forms boric acid uponexposureto the terrestrial atmosphere. The boric acid residue

does not remain on the surface, due to its volatility. Hence the nitrogen to oxygen ratio measured

by ESCA tends to be skewed in favor of nitrogen.

The specimens of highly-oriented pyrolytic graphite (HOPG) were returned to the University

of California at Los Angeles for atomic force microscopy measurements. The results of this study

have been published [9], but a brief summary of the findings is provided here. The exposed HOPG

specimen was eroded by atomic oxygen to a depth of 2.25 _ 0.10 /_m (approximately 6400

monolayers of graphite). The surface roughness was about 85 nm (approximately 240 monolayers

of graphite). The observed roughness is a factor of three greater than what would be predicted by

a strictly stochastic erosion model. A stochastic erosion model assumes shot noise to be the

dominant term in establishing the surface roughness. The expected roughness for this model would

be approximated by the square root of the number of monolayers eroded (80 monolayers or about

30 nm). Surface diffusion of oxygen to edges or defects is proposed as a plausible mechanism for

development of the rougher than expected surfaces.

4.6 AO/Kapton Scattering Results

Scattering product data for the t3C-enriched Kapton interaction with atomic oxygen were

obtained by the EOIM-3 mass spectrometer and in the laboratory are discussed in the following

sections. Additional information obtained from the laboratory time-of-flight data is used to develop

a detailed physical picture of atomic oxygen reacting with a model polymer.

4. 6.1 EOIM-3 Mass Spectra

Figure 4-22 shows representative mass spectra taken with the mass spectrometer viewing the

13C-enriched Kapton sample when the cover was off and when the cover was on. These data

indicate that the net mass spectrum for direct reaction of O atoms with 13C-enriched Kapton can not

be obtained simply by subtracting the cover-on from the cover-off spectrum. Even when the cover

is on, a small peak from 13CO2 can be seen; therefore, scattered O atoms must be reacting with the

sample. If the cover was off, some of these reactions might not occur. Without substantial

modeling of O-atom inelastic scattering from various surfaces on the EOIM-3 tray, it is difficult to

know exactly how to represent the space data. The true mass spectrum for direct O-atom attack
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Figure 4-22. Mass spectra taken with EOIM-3 mass spectrometer

viewing 13C-enriched Kapton on the carousel.
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probably lies somewhere between the cover-off spectrum and the spectrum that is the difference of

cover on and cover off.

4. 6. 2 Laboratory Mass Spectra

The hyperthermal oxygen beam, described in Section 3.9, was directed at Kapton and 13C-

enriched Kapton surfaces, and scattered products were monitored with the mass spectrometer

detector. The angle of incidence was 45 ° with respect to the surface normal, and the detector axis

was also 45 °. Thus, the total included scattering angle was 90 °, similar to the EOIM-3 carousel

experiment. The beam pulse provided the timing for the experiment; no additional chopping was

used. TOF distributions of scattered products were collected at m/z = 16(O+), 18(I-I20+),

28(12CO+), 29(_3CO+), 30(NO+), 32(O2+), 44(12COz), and 45(13COz). Typical accumulation times

for each TOF distribution were 1200 beam pulses. The time resolution was limited by our

multichannel scaler to 2 /_s/channel. All data were collected before a total O-atom fluence of

2 × l0 ts atoms/cm 2 was accumulated on either surface, so the familiar "shag-carpet" morphology was

not fully developed.

4. 6.3 Inelastic Scattering of Oxygen

TOF distributions for O and 02 scattering from the _3C-enriched surface axe shown in Figure

4-23. Time zero in these distributions corresponds to the firing of the laser, so the observed arrival

time includes the flight times of the beam pulse to the surface and scattered products from the

surface to the detector. For reference, the respective beam TOF distributions are shown (dashed

lines) to illustrate the slowing of the impinging species as a result of energy transfer at the surface.

While the O-atom distribution is the result of inelastic scattering from the surface, the 02 TOF

distribution may have an additional contribution from O-atom recombination at the surface. It is

difficult to quantify the amount of O-atom recombination without a careful study of the distributions

of the scattered molecular and atomic oxygen as a function of exit angle. Nevertheless, the 02 (and

O) exhibits a behavior that is typical for inelastic scattering of energetic species from a surface

[10-14].

Regardless of whether O-atoms or 02 molecules scatter from the surface, we see two

components in the TOF distribution--a hyperthermal and roughly thermal component. These two
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Figure 4-23. Time-of-flight distributions of O and 0 2 scattered from
a _3C-enriched Kapton surface.
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components can be understood in terms of two limiting cases of inelastic scattering [10-14]. The

first is direct inelastic scattering, where an incoming atom or molecule bounces off the surface after

a single collision. In this case, the interaction is too fast to allow for thermal equilibration with the

surface and only a fraction of the initial kinetic energy is lost to the surface. The second case is

trapping desorption, where the incoming atom or molecule becomes trapped long enough to come

into thermal equilibrium with the surface and later desorbs at thermal energies.

Both TOF distributions show a large direct inelastic component, demonstrating clearly that

much of the initial energy is not accommodated on the surface. In these particular TOF

distributions, the trapping desorption component appears to be enhanced relative to the direct

inelastic component because: (1) there is an untrue enhancement of the signal at long times due to

inelastic scattering of thermalized O atoms and O2 molecules that effuse out of the source chamber

through the skimmer, and (2) species traveling more slowly through the ionizer have a greater

probability of being ionized than faster species (the flux l(t) is proportional to N(t)/t). Therefore,

we estimate that the trapping desorption component is less than 20 percent for both O and 02

inelastic scattering. It is important to note that the relative fraction of trapping desorption may vary

considerably depending on the initial and final scattering angles [14].

The average fractional energy transfer for direct inelastic scattering is also dependent on the

initial and final scattering angles. Surface roughness may reduce the fraction of direct inelastic

scattering; however, we have observed large direct inelastic scattering components in our laboratory

even when O-atoms scatter from the very rough surface of a graphite polysulfone composite

material. Finally, for comparison, we note that an earlier surface energy accommodation study [15]

with roughly 5-eV O atoms impinging on metal and glass surfaces implied a significant amount of

direct inelastic scattering with the reported energy accommodation coefficients of approximately 0.6

+ 50 percent.

4.6.4 Reactive Scattering of Fast Oxygen and Kapton

Figure 4-24 shows TOF distributions of carbon dioxide products emerging from the surfaces

of Kapton I-IN and t3C-enriched Kapton after being struck by the hyperthermal beam pulse. Again,

time zero corresponds to the fLring of the laser. On the left is signal from Kapton I-IN and, on the
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right, from 13C-enriched Kapton. As can be seen, the 12CO2 signal from plain Kapton is distributed

between 12CO2 and 13CO2 when the reaction occurs with _3C-enfiched Kapton. The fact that the sum

of the signals at the two isotopes from _3C-enriched Kapton add up to the signal at the one isotope

from plain Kapton HN indicates that the signals must originate from reactions with the actual sample

materials and not contamination on them.

Two key observations stand out in the carbon dioxide TOF distributions. First, the 12CO 2

signal from _3C-enriched Kapton is higher than the t3CO2 signal, even though there are more C-13

carbons in the polymer chain. This observation suggests that volatile CO2 is coming preferentially

from reactions with the imide component of the polymer repeat unit. Second, there are two

components in the TOF distributions. It is clear from the bimodal distributions that two kinds of

interactions lead to CO2 products. The faster signal corresponds to products that are ejected from

the surface at hyperthermal energies (-0.7 eV), and the slower signal corresponds to reaction

products that leave the surface at velocities given by the surface temperature. The fast products may

come from a direct reaction--such as the Eley-Rideal mechanism [16]--on the surface with carbonyl

groups that are part of the polyimide polymer or that accumulate on the surface during O-atom

bombardment, or perhaps CO2 residing on the surface is knocked off by collision-induced

desorption. The slow products, on the other hand, are probably the result of a surface reaction that

follows initial adsorption of the impinging O atoms on the surface, e.g. the Langmuir-Hinshelwood

mechanism [16].

We see an analogous behavior for the CO reactive products (Fig. 4-25). The signal is

generally lower, and the relative magnitude of the hyperthermal component is larger.

Figure 4-26 shows TOF distributions collected at two other product masses, corresponding

to H20 and NO. As expected, there is not much difference between the two forms of Kapton at

these unlabeled masses. The shape of the NO + TOF distribution is uncertain because the raw data

contained a relatively large contribution from inelastic scattering of 02, which could stiU be detected

at m/z = 30 with the mass spectrometer resolution employed. We therefore estimated the

contribution from 02 to the ra/z = 30 TOF distribution and subtracted it to arrive at the distribution

shown in Fig. 4-26.
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These preliminary data show some interesting features that suggest preferential attack at the

imide group in the polymer and two types of interaction mechanisms with the surface, giving rise

to thermal and hyperthermal products. A complete understanding of these data wiU require a

detailed study of the TOF distributions at many masses as a function of incident angle, final angle,

surface temperature, incident energy, and incident species. For example, the hyperthermal, or

direct-reaction, signal may depend strongly on incident energy and exit angle and only weakly on

surface temperature, whereas the thermal, or indirect-reaction, signal may have a cosine angular

distribution regardless of incident kinetic energy, and only a change in surface temperature would

affect arrival time.

The observation of more CO and CO2 products from reaction with the imide component of

the polymer raises questions about the fate of the ether component. It appears from our data that

the ether component may degrade partly through release of volatile species other than CO or CO2.

If these volatile species are higher-molecular-weight hydrocarbon fragments, then they could pose

a contamination threat on a spacecraft. Future experiments should include a careful search over a

wide mass range in order to identify any heavier volatile products that might be evaporating from

the surface.

4. 6. 5 Comparison of Lab and Space Results

The laboratory TOF distributions earl be integrated to arrive at a mass spectrum that can be

compared with the EOIM-3 carousel mass spectrum from 13C-enriched Kapton. Figure 4-27 shows

two representations of the flight data with the laboratory mass spectrum in the middle. There are

four peaks in the flight mass spectrum that can be compared with our laboratory mass spectrum of

reactive products: m/z = 29(13CO+), 30(NO+), 44(12CO2+), and 45(13CO2+). The water peak (m/z

= 18) is too large and variable in the flight data to be meaningful, and the m/z = 28 peak in the

flight data is dominated by N2, which is in the ambient LEO environment.

The lab data show more 12CO2 than t3CO 2, and the same may be true of the space data. The

main difference between the lab and flight data is the relatively high ratio of _3CO2 to 13CO products

in the lab as compared with space. The apparently high CO2 signal in the lab might arise from the

high O2 component in the hyperthermal beam (the fraction of 02 in the EOIM-3 environment is < 5
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percent). Perhaps 02 adds to radical sites on the surface and/or dissociates on impact, leading to

O-atom reactions on the surface. In either case, the level of surface oxidation would increase and

thus favor the more highly oxidized form of carbon, i.e., C02.

Although the lab and flight results are preliminary, they do appear similar. Further

laboratory studies with a beam much reduced in molecular oxygen may show even better agreement

with the space data. It is important to have a common point of agreement between the lab and flight

experiments in order to lend credence to the laboratory experiments as representative of the

interactions that take place in LEO. Our laboratory experiment is much more sophisticated than the

EOIM-3 carousel experiment and can therefore reveal much more about the interaction mechanisms

of hyperthermal O atoms with Kapton (or any other material); however, the value of these and

future lab results to the space environment and effects community will ultimately be judged by their

"calibration" with space experiments.
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5.0 Summary and Conclusions

Testmaterials were successfully integrated into several sub-experiment configurations aboard

the EOIM-3 platform and exposed to atomic oxygen in low Earth orbit. Specimens were integrated

into ram-facing passive trays to investigate the absolute erosion rate, oxidation, and morphological

changes. Materials were integrated into heated fixtures to determine the temperature dependence

of the AO degradation processes. A device was developed in order to determine the effects of AO

scattered from various target materials on Kapton. Pre and postflight data were collected on all the

samples, including photography, AFM and SEM microscopy, HPLC, and ESCA surface analysis.

On-orbit mass spectrometry of reaction products from 13C-enriched Kapton was performed.

The JPL EOIM-3 experiment provided new insight into atomic oxygen interactions with

materials. The fluorinated polystyrene experiment demonstrated the vulnerability of the main chain

"backbone" of polymers. The solar UV experiment provided interesting and yet to be explained

enhanced AO reactivity and bulk processes (cross-linking or chain scission) of polystyrene and

PMMA in the night phase. Temperature effects on the thickness of the oxide layer of germanium

were observed and explained via a surface disproportionation mechanism. The mass spectrometry

measurements on-orbit and in the laboratory provided very fundamental data regarding reaction

products and scattering dynamics for atomic oxygen reacting with a polymer. Scattering

experiments on-board EOIM-3 revealed evidence for oxidation and minor erosion of Kapton by

atomic oxygen scattered from several surfaces. The EOIM-3 experiment and correlative ground

studies have provided valuable data for elucidation of interaction mechanisms of atomic oxygen with

materials in the space environment.

Some very useful engineering data were also obtained in the JPL EOIM-3 experiment. The

use of thin film coatings for APSA was validated, with excellent performance witnessed in Ge-

coated Kapton. The stablility of light scattering properties of Spectrolon, including carbon-loaded

low reflectance Spectrolon was demonstrated in this experiment. The effects of atomic oxygen on

the thermo-optical properties of carbon/carbon composites (at elevated temperatures) and advanced

white paints were determined on EOIM-3. The effectiveness of siloxane modification for protection

against AO attack of a commercial polycyanate resin was also demonstrated.
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Table 1. Passive Tray Samples

Sample Material Tray Size
Code

M1 Amorphous teflon 1600 MSFC 2.54 cm

M2 Amorphous teflon 2400 MSFC 2.54 cm

M6 Polystyrene MSFC 2.54 cm

M7 Backbone-fluorinated polystyrene MSFC 2.54 cm

M8 Ring-fluorinated polystyrene MSFC 2.54 cm

Mll TS15 carbon/carbon composite ISC 2.54 cm

M12 SP16 carbon/carbon composite JSC 2.54 cm

M13 SP18 carbon/carbon composite JSC 2.54 cm

M14 Spectrolon--100-percent reflectance JSC 2.54 cm

M15 Spectrolon--45-percent reflectance /SC 2.54 cm

MI6 Spectrolon--25-pereent reflectance ISC 2.54 cm

M17 Spectrolon--3-percent reflectance JSC 2.54 cm

M18 Polyphosphazene-Zot paint JSC 2.54 cm

M19 Cassini--thermal control--I-IINCOR JSC 2.54 cm
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Table2(a). 333 K (60"C) Heated Tray Samples

Sample Code Material Size

TS15b TS15 carbon/carbon composite 2.54 cm

SP16b SP16 carbon/carbon composite 2.54 cm

SP18b SP18 carbon/carbon composite 2.54 cm

Table 2(b). 473 K (200°C) Heated Tray Samples

Sample Code Material Size

TS 15a TS 15 carbon/carbon composite 2.54 cm

SP16a SP16 carbon/carbon composite 2.54 cm

SP18a SP18 carbon/carbon composite 2.54 cm

Table 3. Heated Strip Samples

333 K (600C) 473 K (200°C)

ICI Resin - Base polymer ITO-coated Kapton

ICI Resin - Siloxane modified

ITO-coated Kapton

Carbon-coated Kapton

SiO2-coated Kapton

Carbon-coated Kapton Germanium-coated Kapton

SiO2-coated Kapton Kapton

Germanium-coated Kapton

Kapton
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Table 4. ScatterometerSamples

Reactive Target Materials Scattering Surfaces Size

Highly oriented pyrolytic graphite 13C on carbon/carbon composite 1.3 cm

Highly oriented pyrolytic graphite

Kapton

Kapton

Kapton

Kapton

Aluminum 1.3 cm

Aluminum 1.3 cm

Polyethylene 1.3 cm

SiO 2 1.3 cm

_3C on carbon/carbon composite 1.3 cm

Table 5. SoIar UV Experiment

Sample Code Material Size

SUV1 Polysulfone Udel 1700 2.54 cm

SUV2 Polymethylmethacrylate standard 1.3 cm

SUV3 Teflon AF 1600 1.3 cm

SUV4 Polystyrene standard 1.3 cm

Table 6. Variable Exposure Experiment

Sample Code Material Size

VEEI Highly oriented pyrolytic graphite 1.3 cm
on _3C-coated C/C

VEE2 Boron nitride on silicon 1.3 cm
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PASSIVE TRAY SAMPLES

Material

Polystyrene (PS)
Polystyrene (ground)
Backbone fluorinated PS

Ring fluorinated PS
TS15 C/C
SP16 C/C
SP18 C/C
Spectrolon-100% refl.
Spectrolon-45% refl.
Spectrolon-25% refl,
Spectrolon- 3 % refl.

Pre-flight
(g)

0.01769
0.014046
0.03588
0.01624
1.70014
1.74578
1.72103
3.10628
2.52925
2.47194
2.06116

Post-flight
(g)

0.01492
0.011047
0.03488
0.01447
1.69778
1.74457
1.72027
3.10643
2.52941
2.47202
2.06198

Mass Change
(g)

-0.00277
-0.002999
-0.00100
-0.00177
-0.00236

-0.00121
-0.00076
0.00015
0.00016
0.O0OO8
0.00082

Polyphosphazene-ZOT 2.49990 2.49989 -0.00001
HINCOR thermal control paint 2.17340 2.17317 -0.00023

HEATED STRIP SAMPLES

Material Post-flight

ICI - base cyanate - flight (60C}

ICI - base cyanate - @round
ICI - modified cyanate - flight (60C)
ICI - modified cyanate - ground

Pre-flight
(g)

0.14956
0.114336
0.15048

0.118713

(g)

0.14710
0.110935
0.14992

0.118229

Mass Change

(@)

-0.00246
-0.003401
-0.00056

-0.000484

SCATTEROMETER SAMPLES

Material/Scattering Surface Post-flight

Kapton/Aluminum
Kapton/Polyethylene
Kapton/Si02
Kapton/13C on C/C

Pre-flight
(g)

0.00828
0.00829
0.00823
0.00801

(g)

0.00838
0.00830
0.00842
0.00802

Mass Change

(g)

0.00010
0.00001
0.00019
0.00001
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SOLAR UV EXPERIMENT SAMPLES

Material

Polysulfone - day

Polysulfone - night
Polysulfone - both
PMMA - day
PMMA - night
PMMA - both

PMMA - ground
Polystyrene - day
Polystyrene - night
Polystyrene - both
Polystyrene - ground

Pre-flight
(g)

0.03382
0.03474
0.02100
0.00738
0.00735
0.00478

0.006440
0.00685
0.00455
0.00470

0.006457

Post-flight
(g)

0.03233
0.03396
0.01901
0.00681
0.00677
0.00367

0.005484
0.00649
0.00458
0.00413

0.005910

Mass Change
(g)

-0.00149
-0.00078
-0.00199
-0.00057
-0.00058
-0.00111

-0.000956
-0.00036
0.00003
-0.00057

-0.000547

CAROUSEL SAMPLE: 13C-KAPTON

Panel Pre-coat Pre-bake Post-bake Post-flight
(g) (g) (g) (g)

Side 1
Side 2

45 degree
Bottom

215.8
210.9
115.9
319.2

216.0
211.4
116.8
321.0

216.0
211.4
116.66
320,95

216.0
211.4

116.7
320.9
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PASSIVE TRAY EXPERIMENT

M1

Amorphous teflon 1600

Element

C
0
F

12/3/92

Control

Atom___%_

32.31
10.54
57.15

12/3/92

Flight
Atom%

32.57
10.86
56.57

M2

Amorphous teflon 2400

Element

C
O
F
Si
Na

1213/92

Control

Atom%

32.15
12,26
55.59

0,00
0,00

12/3/92

Flight
Atom%_.

11.81
55.87

0.00
31.01

1.32

M6

Polystyrene

Element

C
0
Si
N
F

Cu
Na

12/3/92

Control

Atom%

94.53
5.47
0.00
0.00
0.00
0.00
0.00

12/3192

Flight
Atom%

65.43
25.21

7.89
1.47

0.00
0.00
0.00

212193

Ground

Atom%

69.79
22.06

0.00
0.00
4.25
2.01
1.89

M7

Backbone-fluorinated Polystyrene

Elemsnt;

C
O
Si
F
N

12/3/92

Control

Atom%

70.19
4.44
3.83

21.54_
0.00

1213/92

Flight
Atom%

56.75
17.61
3.24

20.21
2.19!

M8

Ring-fluorinated Polystyrene

Element

C
O
N
F

12/3/92

Control

Atom%

58.90
2.33
0.00

38,77

1213/92

Flight
Atom%

56.15
15.20
3.23

25.43
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PASSIVE TRAY EXPERIMENT - continued

M14 M15

Spectrolon - 100% reflectance Spectrolon -45% reflectance

Element

Si

C

O

F

12/16/92

Control

Atom%

0.00

32.30

0.00

67.70

12116/92

Flight

Atom%

2.07

30.67

4.25

63.01

Element

Si

C

0

F

12/16/92

Control

Atom%

0.00

32.41

0.00

67.59

12116192

Flight

Atom%

0.97

31.35

2.48

65.20

M16

Spectrolon - 25% reflectance

Element

C

0

F

12/16/92

Control

Atom._%__

32.47

0.00

67.53

12/16/92

Flight

Atom z%_

31.62

0.89

67.50

M17

Spectrolon - 3% reflectance

Element

C

O

F

12/16/92

Control

.Atom %__.

35.39

0.00

64.61

12116/92

Flight

Atom_%__

32.57

2.20

65.23

M18

Polyphosphazene-ZOT paint

Element

P

C

N

0

F

Si

Zn

Na

12/5192

Control

Atom%

5.79

30.40

5.18

10.51

48.12

0.00

0.00

0.00

12/5/92

Flight

Atom%

8.74

23.37

5.86

25.25

30.52

3.21

1.74

1.31

M19

Cassini-HINCOR thermal control

Si

C

K

0

Zn

12/5192

Control

Atom%__

25.36

5.39

9.00

58.27

1.98

12/5/92

Flight

Atom%

23.69

5.81

9.26

59.27

1.97
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PASSIVE and HEATED TRAY EXPERIMENTS

Mll

TS15 C/C composite

Element

C
0
N
Si
Ca
Na
CI
F

12/16/92
Control

Atom%

84.02
11.74

1.78
1.09
O.75
0.37
0.25
0.00

12116/92
Passive

Atom_

81.13
14.92
0.00
2.48
0.00
0.82
0.00
0.65

1/21/93

6O C

Atom%

77.42
18.19
0.00
3.30
0.00
1.09
0.00
0.00

1121193

200 C

Atorn_

81.06
15.37

0.00
2.98
0.00
0.58
0.00
0.00

M12

SP16 C/C composite

Element

C
O
AI
Si
CI
Na

12/16/92

Control

Atom%

82.05
13.64

2.10
1.68
0.53
0.00

12/16/9 2

Passive

Atom%

81.25
15.07
0.00
3.09
0.00
0.59

1/21/93

60 C

Atom_

75.03
20.77

0.00
3.74
0.00
0.46

1/21/93

200 C

Atom_

76.40
18.47
0.00
3.36
0.00
1.77

M13
SP18 C/C composite

Element

C
0
Si
CI
Na
P

12/16/92

Control

Atom_

92.50
6.16
0.81
0,53
0.00
0.00

12/16/92
Passive

Atom%

77.66
17.23
4.48
0.00
0.63
0.00

1/21/g3

6O C

Atom%

73.00
20.66

5.57
o.ooi
0.77

0.00

1/21/93

200 C

Atom_

76.81
17.16

3.78
0.00
1.74
0.51
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HEATED STRIP EXPERIMENT

Kapton HN

Element

C

0

N

Si

Na

CI

2120192

Control

Atom_

77.30

16.24

6.46

0.00

0.00

0.00

1125/93

60 C

Atom ___.

64.20

23.94

7.19

2.84

1.83

0.00

5128193

60 C

Atom%_.

67.88

22.74

6.89

2.49

0.00

0.00

1125/93

200 C

Atom%

59.92i

25.79

7.56

3.27

2.98

0.48

5128/93

200 C

_Atom%

53.57

32.31

5.04

9.08

0.00

0.00

ITO coated Kapton

Element

C

In

Sn

O

Si

1/22/93

Control

Atom%

51.22

14.58

2.48

31.72

0.00

1/22/93

60 C

Atom___.

20.81

12.36

1.93

50.17

14.73

1122/93

200 C

Atom_

18.49

11.27

1.79

53.02

15.44

Carbon coated Kapton

Element

C

N

0

AI

Si

Na

1122/93

Control

Atom%

77.04

6.52

16.44

o.oo!
0.00

0.00

1122/93

60 C

Atom_..%_

70.82

3.41

20.71

1.90

1.59

1.57

1122/93

200 C

Atom%

67.71

4.02

21.97

2.50

2.52

1.28
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HEATED STRIP EXPERIMENT - continued

SiO2 coated Kapton
1/25/93

Control
Element Atom%

Si 29.67
C 12.41
N 0.00
O 54.71
F 2.53

Ca 0.68
Na 0.00

1/25/93 1/25/93

60 C 200 C
Atom% Atom%

30.59 18.27
8.85 25.40
0.98 0.00

57.26 45.75
1.16 1.65
0.00 1.73
1.16 7.20

Germanium coated Kapton

Element

Ge

C
O
Si
Na

12/9/92

Control
Atom%

37.73
18.85
40.76

0.00
2.66

1/22/93

6O C
Atom%

18.94
11.73
53.38
15.95
0.00

5/28/93

6O C

Atom%_

18.93
11.44
54.06
15.56
0.00

1/22F33

200 C
Atom%

30.57
10.98
50.15
8.30
0.00

5/28/93

200 C
Atom%

29.86
11.37
49.61

9.17
0.00

ICI Base Cyanate (BCY)

Element

Si
C
N
O
F

Cu
Na

1/25/93

Control
Atom%

2.66
77.90

3.94
14.19
1.31
0.00
0.00

1/25/93

60 C
Atom%

3.71
69.68
6.70

19.90
0.00
0.00
0.00

2/2/93

Ground
Atom%

0.00
62.31

6.54
24.05

3.87
1.67
1.56

ICI Modified Cyanate (MCY)

Element

Si
C
N
O
F
S

Cu

1/25/93

Control
Atom%

4.91
76.69
4.71

12.44
1.25
0.00
0.00

1/25/93

6O C
Atom%

24.08
18.98
3.13

53.00
0.81
0.00
0.00

2/2/93

Ground
Atom%

28.48
3.68
0.00

56.58
9.43
1.32
0.52
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SCATTEROMETER EXPERIMENT

HOPG

Element

Au

Hg

Si

C

O

1/21/93

Control

Atom%

0.22

0.10

0.00

95.83

3.85

HOPGIAluminum

Element

Au

Hg

Si

C

O

1/26/93

Flight

Atom%

0.00

0.00

1.67

86.37

11.96

HOPG/13Carbon on C/C

Element

Au

Hg

Si

C

O

N

1/26/93

Flight

0.19

0.00

1.38

78.14

16.47

3.82

Kapton

Element

Si

C

N

O

F

2/20/92

Control

Atom%

0.00

77.30

6.46

16.24

0.00

Kapton/Aluminum

1/27/93

Flight

0.97

68.97

6.36

22.88

0.82

5/28/93

Flight

0.94

69.44

6.48

20.56

2.58

Kapton/Polyethylene

Element

Si

C

N

0

1/27/93

Flight

Atom%

1.10

70.88

6.37

21.66

5/28/93

Flight

Atom%

4.89

71.65

5.96

17.50

KaptonlSiO2

Element

Si

CI

C

N

O

F

1/27/93

Flight

Atom%

0.99

0.28

76.45

5.26

15.60

1.43

5/28193

Flight

Atom%

6.30

0.00

71.81

4.54

17.35

0.00

Kapton/13Carbon on C/C

Element

Si

C

N

O

F

1/27/93

Flight

1.75

66.80

7.01

23.31

1.12

5/28/93

Flight

Atom%

7.61

63.54

4.53

24.32

0.00
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SOLAR ULTRA-VIOLET EXPERIMENT (SUV)

Polysulfone Udel 1700

Element

S
C
0
N
Si

1212/92

Control

Atom_

2.09
84.24
13.67
0.00
0.00

1212/92

SUVla

Atom%

3.73
74.27
19.39
2.62
0.00

1212192

SUVlb

Atom%

3.82
73.72
19.52
0.85
2.09

1212/92
SUV1 d

Atom_

4.18
67.29
21.51

7.01
0.00

Polymethymethacrylate standard

Element

C
0
Cs
Si
F

Cu

1212/92

Control

Atom%

73.27
24.96

1.77
0.00
0.00
0.00

1212/92

SUV2a

Atom_

71.32
27.82
0.87
0.00
0.00
0.00

12/2192

SUV2b

_Atom%

69.02
28.53
0.79
1.65
0.00
0.00

1212/92

SUV2d

Atorn_

69.93
28.73

1.35
0.00
0.00
0.00

318193

SUV2e

Atom_

58.23
35.03

1.24
2.21
2.24
1.05

Amorphous Teflon AF 1600

Element

AI
C
0
N
SI
K
F

Na

12116/92
Control

Atom%

1.98
38.23
38.34

2.06
19.39
0.00
0.00
0.00

12116/92

SUV3a
Atom%__

1.64
17.71
49.53

3.06
23.92

1.14
1.63
1.38

12116/92

SUV3b

Atom_

2.38
10.45
56.15

1.09
27.25

0.59
0.86
1.24

12116/92

SUV3d

Atom_

0.00
10.68
57.77

0.00
30.30

0.00
1.26
0.00
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SOLAR ULTRA-VIOLET EXPERIMENT - continued

Polystyrene standard

Element

C
0
Si
Na
N
S
F

Cu

12/2/92

Control

Atom___%_

94.18
5.82
0.00
0.00
0.00
0.00
0.00
0.00

1212/92

SUV4a

Atom_

86.66
13.34

0.00
0.00
0.00
0.00
0.00
0.00

1212/92

SUV4b

Atom%__

80.03
17.73

1.45
0.79
0.00
0.00
0.00
0.00

1212/92

SUV4d

Atom%

80.13
15.90

1.82
0.00
2.15
0.00
0.00
0.00

318/93

SUV4e

Atom%

68.97
24.03

1.39
0.00
0.00
1.30
2.74
1.57

VARIABLE EXPOSURE EXPERIMENT

HOPG/13C coating on C/C

Element

Au

Hg
C
O
Si
Na

1121/93

Control

Atom%

0.22
0.10

95.83
3.85
0.00
0.00

1121/93

Flight
Atom___

0.00
0.00

80.13
15.13
3.28
1.47

BN on silicon

Element

B
C
N
0

Xe
Si

1121/93

Control

Atom%_.

45.53
8.08

42.52
3.59
0.28
0.00

1/21/93

Flight
Atom%

20.96
8.85

17.34
36.87

0.00
15.98
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